telephone triage is more than answering health questions. Telephone triage nurses must be able to ass
ess a client's health concerns without the advantage of visual inspection or face-to-face interaction. Nurses must rely on their communication skills, knowledge of disease processes, and normal growth and development for all age groups in order to ascertain an accurate understanding of the client's symptoms. Triage nurses must have impeccable listening skills to notice the non-verbal clues the client is giving regarding pain, anxiety, fear, and level of comprehension.
There is a difference between health advice lines and triage lines. Health advice lines are usually a community-based information service that offers answers to general healthcare questions. Triage services are typically offered by healthcare facilities and are used in association with a physician's office. They take calls from patients who are attempting to contact the physician or other healthcare provider after usual office hours, for specific health concerns, or urgent medical needs. The triage nurse must assess the severity of the patient's symptoms and then guide the patient to the appropriate level of care.
Triage nurses do not diagnose clients over the phone. The function of the telephone triage nurse is to determine the severity of the caller's complaint using a series of algorithms developed by a coordinated effort of physicians and nurses, direct the caller to the appropriate emergency services if necessary, recommend the suggested medical follow-up based on their assessments and established triage protocols, and provide health information. This process is called the "disposition" in triage settings.
In addition to addressing specific caller complaints, many tele-nurse programs also book appointments for the physicians' offices with which they are associated, both during and after office hours. Furthermore, some programs review and triage the lab/x-ray results received in the office and notify the medical practitioner of critical values. Making follow-up calls to high-risk patients may also involve allowing the triage nurse to assess changes of status or to ensure that the patient sought the appropriate treatment. In addition, there are interpretation services ओफ्फेरेड
A traditional landline telephone system, also known as "plain old telephone service" (POTS), commonly handles both signaling and audio information on the same twisted pair of insulated wires: the telephone line. Although originally designed for voice communication, the system has been adapted for data communication such as Telex, Fax and Internet communication. The signaling equipment consists of a bell, beeper, light or other device to alert the user to incoming calls, and number buttons or a rotary dial to enter a telephone number for outgoing calls. A twisted pair line is preferred as it is more effective at rejecting electromagnetic interference (EMI) and crosstalk than an untwisted pair.
The telephone consists of an alerting device, usually a ringer, that remains connected to the phone line whenever the phone is "on hook", and other components which are connected when the phone is "off hook". These include a transmitter (microphone), a receiver (speaker) and other circuits for dialing, filtering, and amplification. A calling party wishing to speak to another party will pick up the telephone's handset, thus operating a button switch or "switchhook", which puts the telephone into an active (off hook) state by connecting the transmitter (microphone), receiver (speaker) and related audio components to the line. This circuitry has a low resistance (less than 300 Ohms) which causes DC current (48 volts, nominal) from the telephone exchange to flow through the line. The exchange detects this DC current, attaches a digit receiver circuit to the line, and sends a dial tone to indicate readiness. On a modern telephone, the calling party then presses the number buttons in a sequence corresponding to the telephone number of the called party. The buttons are connected to a tone generator circuit that produces DTMF tones which end up at a circuit at the exchange. A rotary dial telephone employs pulse dialing, sending electrical pulses corresponding to the telephone number to the exchange. (Most exchanges are still equipped to handle pulse dialing.) Provided the called party's line is not already active or "busy", the exchange sends an intermittent ringing signal (about 90 volts AC in North America and UK and 60 volts in Germany) to alert the called party to an incoming call. If the called party's line is active, the exchange sends a busy signal to the calling party. However, if the called party's line is active but has call waiting installed, the exchange sends an intermittent audible tone to the called party to indicate an incoming call.
The phone's ringer is connected to the line through a capacitor, a device which blocks the flow of DC current but permits AC current. This constitutes a mechanism whereby the phone draws no current when it is on hook, but exchange circuitry can send an AC voltage down the line to activate the ringer for an incoming call. When a landline phone is inactive or "on hook", the circuitry at the telephone exchange detects the absence of DC current flow and therefore "knows" that the phone is on hook with only the alerting device electrically connected to the line. When a party initiates a call to this line, and the ringing signal is transmitted. When the called party picks up the handset, they actuate a double-circuit switchhook which simultaneously disconnects the alerting device and connects the audio circuitry to the line. This, in turn, draws DC current through the line, confirming that the called phone is now active. The exchange circuitry turns off the ring signal, and both phones are now active and connected through the exchange. The parties may now converse as long as both phones remain off hook. When a party "hangs up", placing the handset back on the cradle or hook, DC current ceases to flow in that line, signaling the exchange to disconnect the call.
Calls to parties beyond the local exchange are carried over "trunk" lines which establish connections between exchanges. In modern telephone networks, fiber-optic cable and digital technology are often employed in such connections. Satellite technology may be used for communication over very long distances.
In most telephones, the transmitter and receiver (microphone and speaker) are located in the handset, although in a speakerphone these components may be located in the base or in a separate enclosure. Powered by the line, the transmitter produces an electric current whose voltage varies in response to the sound waves arriving at its diaphragm. The resulting current is transmitted along the telephone line to the local exchange then on to the other phone (via the local exchange or a larger network), where it passes through the coil of the receiver. The varying voltage in the coil produces a corresponding movement of the receiver's diaphragm, reproducing the sound waves present at the transmitter.
A Lineman's handset is a telephone designed for testing the telephone network, and may be attached directly to aerial lines and other infrastructure components.
No comments:
Post a Comment