Custom Search

Tuesday, July 21, 2009

Battery



In electronics, a battery or voltaic cell is a combination of many electrochemical Galvanic cells of identical type to store chemical energy and to deliver higher voltage or higher current than with single cells.

The battery cells create a voltage difference between the terminals of each cell and hence to its combination in battery. When an external electrical circuit is connected to the battery, then the battery drives electrons through the circuit and electrical work is done. Since the invention of the first Voltaic pile in 1800 by Alessandro Volta, the battery has become a common power source for many household and industrial applications, and is now a multi-billion dollar industry.

In 1780 the Italian anatomist and physiologist Luigi Galvani noticed that dissected frog's legs would twitch when struck by a spark from a Leyden jar, an external source of electricity. In 1786 he noticed that twitching would occur during lightning storms. After many years Galvani learned how to produce twitching without using any external source of electricity. In 1791 he published a report on "animal electricity."He created an electric circuit consisting of the frog's leg (FL) and two different metals A and B, each metal touching the frog's leg and each other, thus producing the circuit A-FL-B-A-FL-B...etc. In modern terms, the frog's leg served as both the electrolyte and the sensor, and the metals served as electrodes. He noticed that even though the frog was dead, its legs would twitch when he touched them with the met

als.

Within a year, Volta realized the frog's moist tissues could be replaced by cardboard soaked in salt water, and the frog's muscular response could be replaced by another form of electrical detection. He already had studied the electrostatic phenomenon of capacitance, which required measurements of electric charge and of electrical potential ("tension"). Building on this experience, Volta was able to detect electric current through his system, also called a Galvanic cell. The terminal voltage of a cell that is not discharging is called its electromotive force (emf), and has the same unit as electrical potential, named (voltage) and measured in volts, in honor of Volta. In 1800, Volta invented the battery by placing many voltaic cells in series, literally piling them one above the other. This Voltaic pile gave a greatly enhanced net emf for the combination with a voltage of about 50 volts for a 32-cell pile.In many parts of Europe batteries continue to be called piles.

Volta did not appreciate that the voltage was due to chemical reactions. He thought that his cells were an inexhaustible source of energy, and that the associated chemical effects (e.g. corrosion) were a mere nuisance, rather than an unavoidable consequence of their operation, as Michael Faraday showed in 1834. According to Faraday, cations (positively charged ions) are attracted to the cathode and anions (negatively charged ions) are attracted to the anode.

Although early batteries were of great value for experimental purposes, in practice their voltages fluctuated and they could not provide a large current for a sustained period. Later, starting with the Daniell cell in 1836, batteries provided more reliable currents and were adopted by industry for use in stationary devices, particularly in telegraph networks where they were the only practical source of electricity, since electrical distribution networks did not then exist. These wet cells used liquid electrolytes, which were prone to leakage and spillage if not handled correctly. Many used glass jars to hold their components, which made them fragile. These characteristics made wet cells unsuitable for portable appliances. Near the end of the nineteenth century, the invention of dry cell batteries, which replaced the liquid electrolyte with a paste, made portable electrical devices practical.

batteries work

A battery is a device that converts chemical energy directly to electrical energy.It consists of one or more voltaic cells; each voltaic cell consists of two half cells connected in series by a conductive electrolyte containing anions and cations. One half-cell includes electrolyte and the electrode to which anions (negatively-charged ions) migrate, i.e. the anode or negative electrode; the other half-cell includes electrolyte and the electrode to which cations (positively-charged ions) migrate, i.e. the cathode or positive electrode. In the redox reaction that powers the battery, reduction (addition of electrons) occurs to cations at the cathode, while oxidation (removal of electrons) occurs to anions at the anode.The electrodes do not touch each other but are electrically connected by the electrolyte, which can be either solid or liquid.Many cells use two half-cells with different electrolytes. In that case each half-cell is enclosed in a container, and a separator that is porous to ions but not the bulk of the electrolytes prevents mixing.

Each half cell has an electromotive force (or emf), determined by its ability to drive electric current from the interior to the exterior of the cell. The net emf of the battery is the difference between the emfs of its half-cells, as first recognized by VoltaThus, if the electrodes have emfs \mathcal{E}_1 and \mathcal{E}_2, then the net emf is \mathcal{E}_{2}-\mathcal{E}_{1}; in other words, the net emf is difference between the reduction potentials of the half-reactions.

The electrical driving force or \displaystyle{\Delta V_{bat}} across the terminals of a battery is known as the terminal voltage (difference) and is measured in volts. The terminal voltage of a battery that is neither charging nor discharging is called the open-circuit voltage and equals the emf of the battery. Because of internal resistance, the terminal voltage of a battery that is discharging is smaller in magnitude than the open-circuit voltage and the terminal voltage of a battery that is charging exceeds the open-circuit voltage.An ideal battery has negligible internal resistance, so it would maintain a constant terminal voltage of \mathcal{E} until exhausted, then dropping to zero. If such a battery maintained 1.5 volts and stored a charge of one Coulomb then on complete discharge it would perform 1.5 Joule of work.In actual batteries, the internal resistance increases under discharge and the open circuit voltage also decreases under discharge. If the voltage and resistance are plotted against time, the resulting graphs typically are a curve; the shape of the curve varies according to the chemistry and internal arrangement employed.

As stated above, the voltage developed across a cell's terminals depends on the energy release of the chemical reactions of its electrodes and electrolyte. Alkaline and carbon-zinc cells have different chemistries but approximately the same emf of 1.5 volts; likewise NiCd and NiMH cells have different chemistries, but approximately the same emf of 1.2 volts. On the other hand the high electrochemical potential changes in the reactions of lithium compounds give lithium cells emfs of 3 volts or more.


types of batteries


Primary batteries

Primary batteries can produce current immediately on assembly. Disposable batteries, also called primary cells, are intended to be used once and discarded. These are most commonly used in portable devices that have low current drain, are only used intermittently, or are used well away from an alternative power source, such as in alarm and communication circuits where other electric power is only intermittently available. Disposable primary cells cannot be reliably recharged, since the chemical reactions are not easily reversible and active materials may not return to their original forms. Battery manufacturers recommend against attempting to recharge primary cells.

Common types of disposable batteries include zinc-carbon batteries and alkaline batteries. Generally, these have higher energy densities than rechargeable batteries,but disposable batteries do not fare well under high-drain applications with loads under 75 ohms (75 Ω).

Secondary battery

Secondary batteries must be charged before use; they are usually assembled with active materials in the discharged state. Rechargeable batteries or secondary cells can be recharged by applying electrical current, which reverses the chemical reactions that occur during its use. Devices to supply the appropriate current are called chargers or rechargers.

The oldest form of rechargeable battery is the lead-acid battery, a type of wet cell. This battery is notable in that it contains a liquid in an unsealed container, requiring that the battery be kept upright and the area be well ventilated to ensure safe dispersal of the hydrogen gas produced by these batteries during overcharging. The lead-acid battery is also very heavy for the amount of electrical energy it can supply. Despite this, its low manufacturing cost and its high surge current levels make its use common where a large capacity (over approximately 10Ah) is required or where the weight and ease of handling are not concerns.

A common form of the lead-acid battery is the modern car battery, which can generally deliver a peak current of 450 amperes.An improved type of liquid electrolyte battery is the sealed valve regulated lead acid (VRLA) battery, popular in the automotive industry as a replacement for the lead-acid wet cell. The VRLA battery uses an immobilized sulfuric acid electrolyte, reducing the chance of leakage and extending shelf lif VRLA batteries have the electrolyte immobilized, usually by one of two means:

  • Gel batteries (or "gel cell") contain a semi-solid electrolyte to prevent spillage.
  • Absorbed Glass Mat (AGM) batteries absorb the electrolyte in a special fiberglass matting

Other portable rechargeable batteries include several "dry cell" types, which are sealed units and are therefore useful in appliances such as mobile phones and laptop computers. Cells of this type (in order of increasing power density and cost) include nickel-cadmium (NiCd), nickel metal hydride (NiMH) and lithium-ion (Li-ion) cells.By far, Li-ion has the highest share of the dry cell rechargeable market.Meanwhile, NiMH has replaced NiCd in most applications due to its higher capacity, but NiCd remains in use in power tools, two-way radios, and medical equipment.

Recent developments include batteries with embedded functionality such as USBCELL, with a built-in charger and USB connector within the AA format, enabling the battery to be charged by plugging into a USB port without a charger and low self-discharge (LSD) mix chemistries such as Hybrio,Eneloop,where cells are precharged prior to shipping.

Battery cell types

There are many general types of electrochemical cells, according to chemical processes applied and design chosen. The variation includes galvanic cells, electrolytic cells, fuel cells, flow cells and voltaic piles.

Battery cell performance

A battery's characteristics may vary over load cycle, charge cycle and over life time due to many factors including internal chemistry, current drain and temperature.

Rechargeable batteries

Rechargeable batteries traditionally self-discharge more rapidly than disposable alkaline batteries, especially nickel-based batteries; a freshly charged NiCd loses 10% of its charge in the first 24 hours, and thereafter discharges at a rate of about 10% a month. However, modern lithium designs have reduced the self-discharge rate to a relatively low level (but still poorer than for primary batteries).Most nickel-based batteries are partially discharged when purchased, and must be charged before first use.

Although rechargeable batteries may be refreshed by charging, they still suffer degradation through usage. Low-capacity nickel metal hydride (NiMH) batteries (1700-2000 mA·h) can be charged for about 1000 cycles, whereas high capacity NiMH batteries (above 2500 mA·h) can be charged for about 500 cycles.Nickel cadmium (NiCd) batteries tend to be rated for 1,000 cycles before their internal resistance increases beyond usable values. Normally a fast charge, rather than a slow overnight charge, will result in a shorter battery lifespan. However, if the overnight charger is not "smart" and cannot detect when the battery is fully charged, then overcharging is likely, which will damage the battery. Degradation usually occurs because electrolyte migrates away from the electrodes or because active material falls off the electrodes. NiCd batteries suffer the drawback that they should be fully discharged before recharge. Without full discharge, crystals may build up on the electrodes, thus decreasing the active surface area and increasing internal resistance. This decreases battery capacity and causes the "memory effect". These electrode crystals can also penetrate the electrolyte separator, thereby causing shorts. NiMH, although similar in chemistry, does not suffer from memory effect to quite this extent. When a battery reaches the end of its lifetime, it will not suddenly lose all of its capacity; rather, its capacity will gradually decrease.

Automotive lead-acid rechargeable batteries have a much harder life. Because of vibration, shock, heat, cold, and sulfation of their lead plates, few automotive batteries last beyond six years of regular use. Automotive starting batteries have many thin plates to provide as much current as possible in a reasonably small package. In general, the thicker the plates, the longer the life of the battery. Typically they are only drained a small amount before recharge. Care should be taken to avoid deep discharging a starting battery, since each charge and discharge cycle causes active material to be shed from the plates."Deep-cycle" lead-acid batteries such as those used in electric golf carts have much thicker plates to aid their longevity. The main benefit of the lead-acid battery is its low cost; the main drawbacks are its large size and weight for a given capacity and voltage.Lead-acid batteries should never be discharged to below 20% of their full capacity, because internal resistance will cause heat and damage when they are recharged. Deep-cycle lead-acid systems often use a low-charge warning light or a low-charge power cut-off switch to prevent the type of damage that will shorten the battery's life.

Extending battery life

Battery life can be extended by storing the batteries at a low temperature, as in a refrigerator or freezer, because the chemical reactions in the batteries are slower. Such storage can extend the life of alkaline batteries by ~5%; while the charge of rechargeable batteries can be extended from a few days up to several months. In order to reach their maximum voltage, batteries must be returned to room temperature; discharging an alkaline battery at 250 mAh at 0°C is only half as efficient as it is at 20°C.As a result, alkaline battery manufacturers like Duracell do not recommend refrigerating or freezing batteries.





No comments:

Post a Comment